On point estimation of the abnormality of a Mahalanobis index

نویسندگان

  • Fadlalla G. Elfadaly
  • Paul H. Garthwaite
  • John R. Crawford
چکیده

Mahalanobis distance may be used as a measure of the disparity between an individual's profile of scores and the average profile of a population of controls. The degree to which the individual's profile is unusual can then be equated to the proportion of the population who would have a larger Mahalanobis distance than the individual. Several estimators of this proportion are examined. These include plug-in maximum likelihood estimators, medians, the posterior mean from a Bayesian probability matching prior, an estimator derived from a Taylor expansion, and two forms of polynomial approximation, one based on Bernstein polynomial and one on a quadrature method. Simulations show that some estimators, including the commonly-used plug-in maximum likelihood estimators, can have substantial bias for small or moderate sample sizes. The polynomial approximations yield estimators that have low bias, with the quadrature method marginally to be preferred over Bernstein polynomials. However, the polynomial estimators sometimes yield infeasible estimates that are outside the 0-1 range. While none of the estimators are perfectly unbiased, the median estimators match their definition; in simulations their estimates of the proportion have a median error close to zero. The standard median estimator can give unrealistically small estimates (including 0) and an adjustment is proposed that ensures estimates are always credible. This latter estimator has much to recommend it when unbiasedness is not of paramount importance, while the quadrature method is recommended when bias is the dominant issue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying the Mahalanobis-Taguchi System to Vehicle Ride

The Mahalanobis Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. The Mahalanobis Taguchi System is of interest because of its reported accuracy in forecasting small, correlated data sets. Th...

متن کامل

Identifying Useful Variables for Vehicle Braking Using the Adjoint Matrix Approach to the Mahalanobis-Taguchi System

The Mahalanobis Taguchi System (MTS) is a diagnosis and forecasting method for multivariate data. Mahalanobis distance (MD) is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. MTS is of interest because of its reported accuracy in forecasting small, correlated data sets. This is the type o...

متن کامل

Change Point Estimation of the Stationary State in Auto Regressive Moving Average Models, Using Maximum Likelihood Estimation and Singular Value Decomposition-based Filtering

In this paper, for the first time, the subject of change point estimation has been utilized in the stationary state of auto regressive moving average (ARMA) (1, 1). In the monitoring phase, in case the features of the question pursue a time series, i.e., ARMA(1,1), on the basis of the maximum likelihood technique, an approach will be developed for the estimation of the stationary state’s change...

متن کامل

A Comparison of the Mahalanobis-Taguchi System to A Standard Statistical Method for Defect Detection

The Mahalanobis-Taguchi System is a diagnosis and forecasting method for multivariate data. Mahalanobis distance is a measure based on correlations between the variables and different patterns that can be identified and analyzed with respect to a base or reference group. This paper presents a comparison of the Mahalanobis-Taguchi System and a standard statistical technique for defect detection ...

متن کامل

An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition

The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2016